

Data Sheet July 1998 File Number 4404.2

Low Cost 3 REN Ringing SLIC for ISDN Modem/TA and WL

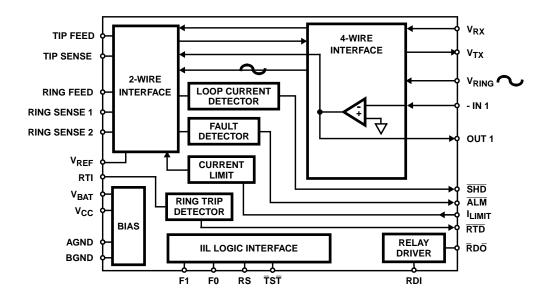
The HC5517B low cost, 3 REN ringing SLIC is designed to accommodate a wide variety of short loop applications and provides the same degree of flexibility as the high performance HC5517. The flexible features include open circuit tip to ring DC voltages, user defined ringing waveforms, ring trip detection thresholds, and loop current limits that can be tailored for many applications. Additional features of the HC5517B are complex impedance matching, pulse metering, and transhybrid balance. The HC5517B is designed for use in short loop, low cost systems where traditional ring generation is not economically feasible.

The device is manufactured in a high voltage Dielectric Isolation (DI) process. The DI process provides substrate latch up immunity, resulting in a robust system design. A thermal shutdown with an alarm output and line fault protection are also included for operation in harsh environments.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
HC5517BCM	0 to 75	28 Ld PLCC	N28.45
HC5517BCB	0 to 75	28 SOIC	M28.3

Features


•	Load Drive Capability 3 REN
•	Trapezoidal, Square or Sine Wave Capability
•	Ringing from -80V Battery
•	Ringing from -75V Battery

- Ringing Current Independent of Loop Current Setting
- Ringing Crest Factor Independent of REN Loading
- · Latchup Immune to Inductive Kick Back and Hot Plug
- · Fax, Answering Machine and MTU Compatible
- · Resistive and Complex Impedance Matching
- Programmable Loop Current Limit
- Switch Hook, Ring Trip and Ground Key Detection
- Single Low Voltage +5V Supply

Applications

- Solid State Line Interface Circuit for Hybrid Fiber Coax, Set Top Box, Voice/Data Modems
- Related Literature
 - AN9607, Impedance Matching Design Equations
 - AN9628, AC Voltage Gain
 - AN9636, Implementing an Analog Port for ISDN
 - AN549, The HC-5502/4X Telephone SLIC

Block Diagram

Absolute Maximum Ratings $T_A = 25^{\circ}C$

Maximum Supply Voltages	
(V _{CC})	0.5V to +7V
(V _{CC})-(V _{BAT})	90V
Relay Drivers	0.5V to +15V

Operating Conditions

Temperature Range	
HC5517BCM, HC5517BCB	0 ⁰ C to 75 ⁰ C
Relay Drivers	+5V to +12V
Positive Power Supply (V _{CC})	+5V ±5%
Negative Power Supply (VBAT)	16V to -80V

Thermal Information

Thermal Resistance (Typical, Note 1)	θ _{JA} (°C/W)
PLCC Package	55
SOIC Package	
Maximum Junction Temperature, Plastic Packages	150°C
Maximum Storage Temperature Range65	^o C to 150 ^o C
Maximum Lead Temperature (Soldering 10s)	300°C
(SOIC, PLCC - Lead Tips Only)	

Die Characteristics

Transistor Count	224
Diode Count	28
Die Dimensions	74 x 120
Substrate Potential	\dots V _{BAT}
Process E	3ipolar-DI
ESD (Human Body Model)	500V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied

NOTES:

- 1. θ_{JA} is measured with the component mounted on an evaluation board PC board in free air.
- All grounds (AGND, BGND) must be applied before V_{CC} or V_{BAT}. Failure to do so may result in premature failure of the part. If a user wishes
 to run separate grounds off a line card, the AGND must be applied first.

Electrical Specifications

Unless Otherwise Specified, Typical Parameters are at $T_A = 25^{\circ}C$, Min-Max Parameters are over Operating Temperature Range, $V_{BAT} = -24V$, $V_{CC} = +5V$, AGND = BGND = 0V. All AC Parameters are specified at 600Ω 2-Wire Terminating Impedance

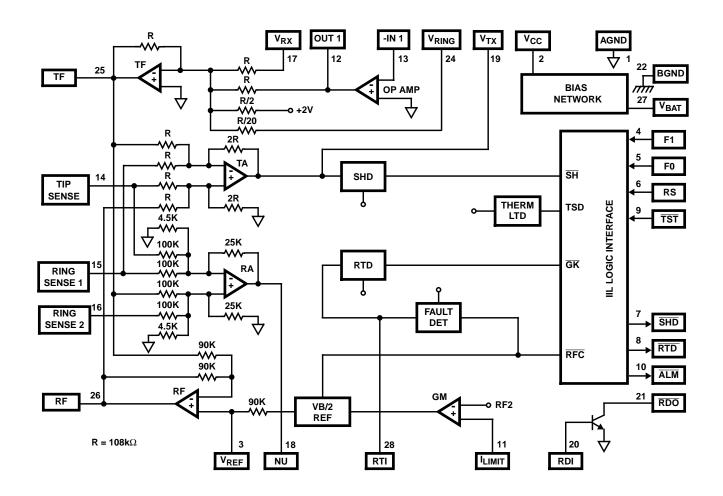
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS	
RINGING TRANSMISSION PARAMETERS						
V _{RING} Input Impedance	(Note 3)		5.4		kΩ	
4-Wire to 2-Wire Gain	V _{RING} to Vt-r (Note 3)		40		V/V	
AC TRANSMISSION PARAMETERS						
RX Input Impedance	300Hz to 3.4kHz (Note 3)		108		kΩ	
TX Output Impedance	300Hz to 3.4kHz (Note 3)			20	Ω	
4-Wire Input Overload Level	300Hz to 3.4kHz R _L = 1200 Ω , 600 Ω Reference (Note 3)	+1.0			V _{PEAK}	
2-Wire Return Loss	Matched for 600Ω (Note 3)					
SRL LO		26	35		dB	
ERL		30	40		dB	
SRL HI		30	40		dB	
2-Wire Longitudinal to Metallic Balance Off Hook	Per ANSI/IEEE STD 455-1976 (Note 3) 300Hz to 3400Hz	40			dB	
4-Wire Longitudinal Balance Off Hook	300Hz to 3400Hz (Note 3)	40			dB	
Low Frequency Longitudinal Balance	$I_{LINE} = 40$ mA $T_A = 25$ °C (Note 3)		10	23	dBrnc	
Longitudinal Current Capability	I _{LINE} = 40mA T _A = 25°C (Note 3)			40	mA _{RMS}	
Insertion Loss	0dBm at 1kHz, Referenced 600Ω					
2-Wire/4-Wire (Includes External Transhybrid Amplifier with a Gain of 2.4)			±0.05	±0.2	dB	
4-Wire/2-Wire			±0.05	±0.2	dB	
4-Wire/4-Wire (Includes External Transhybrid Amplifier with a Gain of 2.4)		-		±0.35	dB	

Electrical Specifications

Unless Otherwise Specified, Typical Parameters are at $T_A = 25^{\circ}C$, Min-Max Parameters are over Operating Temperature Range, $V_{BAT} = -24V$, $V_{CC} = +5V$, AGND = BGND = 0V. All AC Parameters are specified at 600Ω 2-Wire Terminating Impedance (Continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Frequency Response	300Hz to 3400Hz (Note 3) Referenced to Absolute Level at 1kHz, 0dBm Referenced 600Ω	-	±0.02	±0.06	dB
Level Linearity	Referenced to -10dBm (Note 3)				
2-Wire to 4-Wire and 4-Wire to 2-Wire	+3 to -40dBm	-	-	±0.08	dB
	-40 to -50dBm	-	-	±0.12	dB
	-50 to -55dBm	-	-	±0.3	dB
Absolute Delay	(Note 3)				
2-Wire/4-Wire	300Hz to 3400Hz	-	-	1.0	μs
4-Wire/2-Wire	300Hz to 3400Hz	-	-	1.0	μs
4-Wire/4-Wire	300Hz to 3400Hz	-	0.95	1.5	μs
Transhybrid Loss	V _{IN} = 1V _{P-P} at 1kHz (Note 3,4)	30	40	-	dB
Total Harmonic Distortion 2-Wire/4-Wire, 4-Wire/2-Wire, 4-Wire/4-Wire	Reference Level 0dBm at 600Ω 300Hz to 3400Hz (Note 3)	-	-	-50	dB
Idle Channel Noise 2-Wire and 4-Wire	(Note 3) C-Message	-	3	-	dBrnC
	Psophometric (Note 3)	-	-87	-	dBmp
Power Supply Rejection Ratio V _{CC} to 2-Wire	(Note 3) 30Hz to 200Hz, $R_L = 600\Omega$	20	40	-	dB
V _{CC} to 4-Wire		20	40	-	dB
V _{BAT} to 2-Wire		20	40	-	dB
V _{BAT} to 4-Wire		20	50	-	dB
V _{CC} to 2-Wire	(Note 3)	30	40	-	dB
V _{CC} to 4-Wire	200 Hz to 16kHz, R _L = 600Ω	20	28	-	dB
V _{BAT} to 2-Wire		20	50	-	dB
V _{BAT} to 4-Wire		20	50	-	dB
DC PARAMETERS		<u> </u>			
Loop Current Programming Limit Range		20 (Note 5)	-	60	mA
Accuracy		15	-	-	%
Loop Current During Power Denial	$R_L = 200\Omega$	-	±4	±7	mA
Fault Currents TIP to Ground (Note 3)			20	_	m^
	_	-	30		mA
RING to Ground	_	-	120	-	mA
TIP and RING to Ground (Note 3)		-	150	-	mA
Switch Hook Detection Threshold		-	12	15	mA
Ring Trip Comparator Voltage Threshold		-0.28	-0.24	-0.22	V
Thermal ALARM Output (Note 3)	Safe Operating Die Temperature Exceeded	140	-	160	°C
Dial Pulse Distortion (Note 3)		-	0.1	0.5	ms

HC5517B


Electrical Specifications

Unless Otherwise Specified, Typical Parameters are at $T_A = 25^{\circ}C$, Min-Max Parameters are over Operating Temperature Range, $V_{BAT} = -24V$, $V_{CC} = +5V$, AGND = BGND = 0V. All AC Parameters are specified at 600Ω 2-Wire Terminating Impedance (Continued)

TEST CONDITIONS	MIN	TYP	MAX	UNITS
I_{OL} (\overline{RDO}) = 30mA	-	0.2	0.5	V
	-	±10	±100	μΑ
	0	_	0.8	V
	_	_		V
IIH. 0V < V _{INI} < 5V	-	_		μΑ
···	-	-	-100	μА
		0.3	0.6	V
 		0.3	0.0	V
 		-	-	-
	-			mW
V_{CC} = +5V, V_{BAT} = -48V, R_{LOOP} = ∞	-	150	-	mW
V_{CC} = +5V, V_{BAT} = -24V, R_{LOOP} = 600 Ω , I_L = 25mA	-	280	-	mW
V_{CC} = +5V, V_{BAT} = -80V, R_{LOOP} = ∞	-	3	6	mA
V_{CC} = +5V, V_{BAT} = -48V, R_{LOOP} = ∞	-	2	5	mA
V_{CC} = +5V, V_{BAT} = -24V, R_{LOOP} = ∞	-	1.9	4	mA
V _{CC} = +5V, V _B - = -80V, R _{LOOP} = ∞	-	3.6	7	mA
V_{CC} = +5V, V_{B^-} = -48V, R_{LOOP} = ∞	-	2.6	6	mA
V_{CC} = +5V, V_{B^-} = -24V, R_{LOOP} = ∞	-	1.8	4	mA
•	•	•		
	-	±5	-	mV
	-	±10	-	nA
	-	1	-	МΩ
$R_L = 10k\Omega$	-	±3	-	V _{P-P}
	-	1	-	MHz
	$I_{OL} (\overline{RDO}) = 30 \text{mA}$ $IIH, 0V \leq V_{IN} \leq 5V$ $IIL, 0V \leq V_{IN} \leq 5V$ $I_{LOAD} = 800 \mu A$ $I_{LOAD} = 40 \mu A$ $V_{CC} = +5V, V_{BAT} = -80V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{BAT} = -24V, R_{LOOP} = 600 \Omega, I_{L} = 25 \text{mA}$ $V_{CC} = +5V, V_{BAT} = -48V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{BAT} = -48V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{BAT} = -48V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{BAT} = -24V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{B} = -80V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{B} = -80V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{B} = -48V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{B} = -24V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{B} = -24V, R_{LOOP} = \infty$	$I_{OL}(\overline{RDO}) = 30 \text{mA} \qquad -$ 0 2.0 $IIH, 0V \leq V_{IN} \leq 5V$ $IIL, 0V \leq V_{IN} \leq 5V$ $I_{LOAD} = 800 \mu A$ $V_{CC} = +5V, V_{BAT} = -80V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{BAT} = -48V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{BAT} = -24V, R_{LOOP} = 600 \Omega, I_{L} = 25 \text{mA}$ $V_{CC} = +5V, V_{BAT} = -48V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{BAT} = -48V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{BAT} = -48V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{BAT} = -24V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{BAT} = -24V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{B} = -80V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{B} = -48V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{B} = -24V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{B} = -24V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{B} = -24V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{B} = -24V, R_{LOOP} = \infty$ $V_{CC} = +5V, V_{B} = -24V, R_{LOOP} = \infty$	$\begin{split} I_{OL}\left(\overline{\text{RDO}}\right) = 30\text{mA} & - & 0.2 \\ & - & \pm 10 \\ & 0 & - \\ & 2.0 & - \\ & IIH, 0V \leq V_{\text{IN}} \leq 5V & - & - \\ & IIL, 0V \leq V_{\text{IN}} \leq 5V & - & - \\ & I_{\text{LOAD}} = 800\mu\text{A} & - & 0.3 \\ & I_{\text{LOAD}} = 40\mu\text{A} & 2.7 & - \\ & V_{\text{CC}} = +5V, V_{\text{BAT}} = -80V, R_{\text{LOOP}} = \infty & - & 300 \\ & V_{\text{CC}} = +5V, V_{\text{BAT}} = -48V, R_{\text{LOOP}} = \infty & - & 150 \\ & V_{\text{CC}} = +5V, V_{\text{BAT}} = -24V, R_{\text{LOOP}} = 600\Omega, & - & 280 \\ & I_{\text{L}} = 25\text{mA} & - & 3 \\ & V_{\text{CC}} = +5V, V_{\text{BAT}} = -48V, R_{\text{LOOP}} = \infty & - & 3 \\ & V_{\text{CC}} = +5V, V_{\text{BAT}} = -24V, R_{\text{LOOP}} = \infty & - & 2 \\ & V_{\text{CC}} = +5V, V_{\text{BAT}} = -24V, R_{\text{LOOP}} = \infty & - & 2 \\ & V_{\text{CC}} = +5V, V_{\text{BAT}} = -24V, R_{\text{LOOP}} = \infty & - & 1.9 \\ & V_{\text{CC}} = +5V, V_{\text{B}} = -24V, R_{\text{LOOP}} = \infty & - & 2.6 \\ & V_{\text{CC}} = +5V, V_{\text{B}} = -24V, R_{\text{LOOP}} = \infty & - & 2.6 \\ & V_{\text{CC}} = +5V, V_{\text{B}} = -24V, R_{\text{LOOP}} = \infty & - & 2.6 \\ & V_{\text{CC}} = +5V, V_{\text{B}} = -24V, R_{\text{LOOP}} = \infty & - & 1.8 \\ & & - & \pm 5 \\ & & - & \pm 10 \\ & & - & \pm 5 \\ & & - & \pm 10 \\ & & - & 1 \\ & R_{\text{L}} = 10\text{k}\Omega & - & \pm 3 \\ & - & \pm 3 \\ & - & \pm 3 \\ & - & \pm 10 \\ & - & 1 \\ & - &$	$\begin{split} I_{OL}\left(\overline{\text{RDO}}\right) = 30\text{mA} & - & 0.2 & 0.5 \\ & - & \pm 10 & \pm 100 \\ & 0 & - & 0.8 \\ & 2.0 & - & 5.5 \\ \hline \\ IIH, 0V \leq V_{\text{IN}} \leq 5V & - & - & -1 \\ IIL, 0V \leq V_{\text{IN}} \leq 5V & - & - & -100 \\ \\ I_{LOAD} = 800\mu\text{A} & - & 0.3 & 0.6 \\ \\ I_{LOAD} = 40\mu\text{A} & 2.7 & - & - \\ V_{CC} = +5V, V_{\text{BAT}} = -80V, R_{\text{LOOP}} = \infty & - & 300 & - \\ V_{\text{CC}} = +5V, V_{\text{BAT}} = -48V, R_{\text{LOOP}} = \infty & - & 150 & - \\ V_{\text{CC}} = +5V, V_{\text{BAT}} = -24V, R_{\text{LOOP}} = 600\Omega, \\ I_{L} = 25\text{mA} & - & 280 & - \\ V_{\text{CC}} = +5V, V_{\text{BAT}} = -80V, R_{\text{LOOP}} = \infty & - & 3 & 6 \\ V_{\text{CC}} = +5V, V_{\text{BAT}} = -80V, R_{\text{LOOP}} = \infty & - & 2 & 5 \\ V_{\text{CC}} = +5V, V_{\text{BAT}} = -24V, R_{\text{LOOP}} = \infty & - & 1.9 & 4 \\ V_{\text{CC}} = +5V, V_{\text{B}} = -80V, R_{\text{LOOP}} = \infty & - & 1.9 & 4 \\ V_{\text{CC}} = +5V, V_{\text{B}} = -80V, R_{\text{LOOP}} = \infty & - & 2.6 & 6 \\ V_{\text{CC}} = +5V, V_{\text{B}} = -24V, R_{\text{LOOP}} = \infty & - & 2.6 & 6 \\ V_{\text{CC}} = +5V, V_{\text{B}} = -24V, R_{\text{LOOP}} = \infty & - & 1.8 & 4 \\ \hline & & - & \pm 5 & - \\ & & & - & \pm 10 & - \\ R_{\text{L}} = 10\text{k}\Omega & - & \pm 3 & - \\ \hline \end{array}$

NOTES:

- These parameters are controlled by design or process parameters and are not directly tested. These parameters are characterized upon initial design release, upon design changes which would affect these characteristics, and at intervals to assure product quality and specification compliance.
- 4. For transhybrid circuit as shown in Figure 3.
- 5. Application limitation based on maximum switch hook detect limit and metallic currents. Not a part limitation.

HC5517B DEVICE TRUTH TABLE

F1	F0	STATE	
0	0	Loop power Denial Active	
0	1	Power Down Latch RESET, Power on RESET	
1	0	RD Active (unbalanced ringing)	
1	1	Normal Loop feed	

The truth table for the internal logic of the HC5517B is provided in the above table. This family of ringing SLICs can be configured to support traditional unbalanced ringing and through SLIC balanced ringing. The device operating states used by through SLIC ringing applications are loop power denial and normal feed. During loop power denial, the tip and ring amplifiers are disabled (high impedance) and the DC voltage of each amplifier approaches ground. The SLIC will not provide current to the subscriber loop during this mode and will not detect loop closure. Voice transmission occurs during the normal loop feed mode. During normal loop feed the SLIC is completely operational and performs all transmission and supervisory functions.

Power Dissipation

Careful thermal design is required to guarantee that the maximum junction temperature of 150°C of the device is not exceeded. The junction temperature of the SLIC can be calculated using:

$$T_{J} = T_{A} + \theta_{JA}(I_{CC} V_{CC} + I_{BAT} V_{BAT} - ((I_{LOOP})^{2} \bullet R_{LOOP}))$$
(EQ. 1)

Where T_A is maximum ambient temperature and θ_{JA} is junction to air thermal resistance (and is package dependent). The entire term in parentheses yields the SLIC power dissipation. The power dissipation of the subscriber loop does not contribute to device junction temperature and is subtracted from the power dissipation term. Operating at 85°C, the maximum PLCC SLIC power dissipation is 1.18W. Likewise, the maximum SOIC SLIC power dissipation is 0.92W.

Circuit Operation and Design Information

SLIC DESIGN EQUATIONS

FUNCTION	EQUATION	DEFINITION OF TERMS
2-Wire to 4-Wire Gain	$\frac{V_{OUT1}}{V_{2W}} = -\left(\frac{200}{Z_{2w}}\right) \cdot \frac{R_{ZO}}{R_{RF}}$	V_{OUT1} = SLIC 4-wire Output V_{2w} = Voltage across 2-wire load Z_{2W} = 2-Wire Impedance
4-Wire To 2-wire Gain	$\frac{V_{2W}}{V_{RX}} = -2 \cdot \left(\frac{Z_{2W}}{Z_{2W} + Z_{SLIC}} \right)$	V_{2W} = Voltage Across 2-Wire Load V_{RX} = SLIC 4-Wire Input Z_{2W} = 2-Wire Impedance Z_{SLIC} = SLIC Synthesized Impedance
4-Wire To 4-wire Gain	$\frac{V_{OUT1}}{V_{RX}} = -2 \cdot \left(\frac{Z_{2W}}{Z_{2W} + Z_{SLIC}}\right) \cdot \frac{200}{Z_{2W}} \cdot \frac{R_{ZO}}{R_{RF}}$	V_{OUT1} = SLIC 4-Wire Output V_{RX} = SLIC 4-Wire Input Z_{2W} = 2-Wire Impedance Z_{SLIC} = SLIC Synthesized Impedance
Loop Current Limit Programming	$I_{LIMIT} = \frac{(0.6)(R_{IL1} + R_{IL2})}{(200xR_{IL2})}$	I _{LIMIT} = Programmed Loop Current Limit R _{IL1} = Programming Resistor R _{IL2} = Programming Resistor
Impedance Matching	$R_{ZO} = K \cdot (Z_{2W} - 100)$ $R_{RF} = K \cdot 200 \cdot 2$	Z _{2W} = 2-Wire Impedance K = 100

Through SLIC Ringing

The HC5517B uses linear amplification to produce the ringing signal. As a result the ringing SLIC can produce sinusoid, trapezoid or square wave ringing signals. Regardless of the wave shape, the ringing signal is balanced. The balanced waveform is another way of saying that the tip and ring DC potentials are the same during ringing.

Trapezoidal Ringing

The trapezoidal ringing waveform provides a larger RMS voltage to the handset. Larger RMS voltages to the handset provide more power for ringing and also increase the loop length supported by the ringing SLIC.

One set of component values will satisfy the entire ringing loop range of the SLIC. A single resistor sets the open circuit RMS ringing voltage, which will set the crest factor of the ringing waveform. The crest factor of the HC5517B ringing waveform is independent of the ringing load (REN) and the loop length. Another robust feature of the HC5517B ringing SLIC is the ring trip detector circuit. The suggested values for the ring trip detector circuit cover quite a large range of applications.

The assumptions used to design the trapezoidal ringing application circuit are listed below:

- Loop current limit set to 25mA.
- Impedance matching is set to 600Ω resistive.
- · 2-wire surge protection is not required.
- System able to monitor RTD and SHD.

Logic ringing signal is used to drive RC trapezoid network.

Crest Factor Programming

As previously mentioned, a single resistor is required to set the crest factor of the trapezoidal waveform. The only design variable in determining the crest factor is the battery voltage. The battery voltage limits the peak signal swing and therefore directly determines the crest factor.

A set of tables will be provided to allow selection of the crest factor setting resistor. The tables will include crest factors below the Bellcore minimum of 1.2 since many ringing SLIC applications are not constrained by Bellcore requirements.

TABLE 1. CREST FACTOR PROGRAMMING RESISTOR FOR $V_{BAT} = -80V$

RTRAP	CF	RMS	RTRAP	CF	RMS
0Ω	1.10	65.0	825Ω	1.25	57.6
389Ω	1.15	62.6	964Ω	1.30	55.4
640Ω	1.20	60.0	1095Ω	1.35	53.3

The RMS voltage listed in the table is the open circuit RMS voltage generated by the SLIC.

TABLE 2. CREST FACTOR PROGRAMMING RESISTOR FOR $V_{BAT} = -75V$

RTRAP	CF	RMS	RTRAP	CF	RMS
Ω0	1.10	60.9	1010Ω	1.25	53.7
500Ω	1.15	58.3	1190Ω	1.30	51.6
791Ω	1.20	55.9	1334Ω	1.35	49.7

TABLE 3. CREST FACTOR PROGRAMMING RESISTOR FOR $V_{BAT} = -65V$

RTRAP	RTRAP CF		RTRAP	CF RMS	
0Ω	1.10	52.5	1330Ω	1.25	45.9
660Ω	1.15	49.8	1600Ω	1.30	44.1
1040Ω	1.20	47.8	1800Ω	1.35	42.5

TABLE 4. CREST FACTOR PROGRAMMING RESISTOR FOR $V_{BAT} = -60V$

RTRAP	RTRAP CF		RTRAP	CF	RMS	
0Ω	1.10	48.2	1460Ω	1.25	42.0	
740Ω	1.15	45.6	1760Ω	1.30	40.4	
1129Ω	1.20	43.7	2030Ω	1.35	38.8	

The voltages listed in the tables are driven from a logic source that will not drive the ringing input negative. If the ringing input is driven negative by 200mV, the peak-to-peak ringing amplitudes can be increased.

Ringing Voltage Limiting Factors

As the load impedance decreases (increasing REN), the source impedance of the SLIC during ringing slightly attenuates the ringing signal.

If additional surge protection resistance must be used with the trapezoidal circuit, the loop length performance of the circuit will decrease proportionally to the added resistance in the Tip and Ring leads. For example if 30Ω protection resistors is used in each of the Tip and Ring leads, the ringing loop length will decrease by a total of 60Ω .

Low Level Ringing Interface

The trapezoidal application circuit only requires a cadenced logic signal applied to the wave shaping RC network to achieve ringing. When not ringing, the logic signal should be held low. When the logic signal is low, Tip will be near ground and Ring will be near battery. When the logic signal is high, Tip will be near battery and Ring will be near ground.

Loop Detector Interface

The RTD output should be monitored for off hook detection during the ringing period. At all other times, the SHD should be monitored for off hook detection. The application circuit can be modified to redirect the ring trip information through the SHD interface. The change can be made by rewiring the application circuit, adding a pullup resistor to pin 23 and setting F0 low for the entire duration of the ringing period. The modifications to the application circuit for the single detector interface are shown in Figure 1.

SLIC Operating State During Ringing

The SLIC control pin F1 should always be a logic high during ringing. The control pin F0 will either be a constant logic high (two detector interface) or a logic low (single detector interface). Figure 2 shows the control interface for the dual detector interface and the single detector interface.

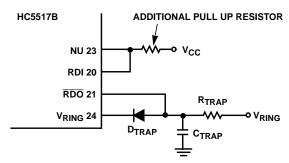


FIGURE 1. APPLICATION CIRCUIT WIRING FOR SINGLE LOOP DETECTOR INTERFACE

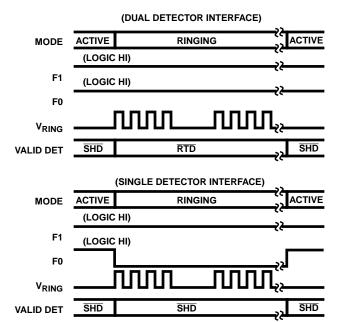


FIGURE 2. DETECTOR LOGIC INTERFACES

Additional Application Information

Transhybrid Balance

Since the receive signal and its echo are 180 degrees out of phase, the summing node of an operational amplifier can be used to cancel the echo. Nearly all CODECs have an internal amplifier for echo cancellation. The circuit in Figure 3 shows the cancellation amplifier circuit.

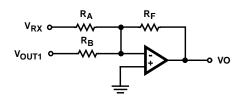


FIGURE 3. TRANSHYBRID AMPLIFIER CIRCUIT

When the SLIC is matched to a 600Ω load and only the sense resistors are used, the 4-wire to 4-wire gain is equal to 5/12 as predicted by the design equations. Therefore, by configuring the transhybrid amplifier with a gain of 2.4 in the echo path, cancellation can be achieved. The following equations:

$$V_{O} = -\left(V_{RX}\left(\frac{R_{F}}{R_{A}}\right) + V_{OUT1}\left(\frac{R_{F}}{R_{B}}\right)\right)$$
 (EQ. 2)

Substituting the fact that VOUT1 is -5/12 of VRX

$$V_{O} = -\left(V_{RX}\left(\frac{R_{F}}{R_{A}}\right) - V_{RX}\left(-\left(\frac{5}{12}\right)\right)\left(\frac{R_{F}}{R_{B}}\right)\right)$$
 (EQ. 3)

Since cancellation implies that under these conditions, the output V_O should be zero, set Equation 2 equal to zero and solve for R_B .

$$R_{B} = \frac{R_{A}}{24} \tag{EQ. 4}$$

Another outcome of the transhybrid gain selection is the 2-wire to 4-wire gain of the SLIC as seen by the CODEC. The 5/12 voltage gain in the transmit path is relevant to the receive input as well as any signals from the 2-wire side. Therefore by setting the V_{OUT1} gain to 2.4 in the previous analysis, the 2-wire to 4-wire gain was set to unity.

Single Supply CODEC Interface

The majority of CODECs that interface to the ringing SLIC operate from a single +5V supply and ground. Figure 4 shows the circuitry required to properly interface the ringing SLIC to the single supply CODEC.

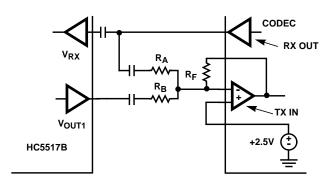


FIGURE 4. SINGLE SUPPLY CODEC INTERFACE

The CODEC signal names may vary from different manufacturers, but the function provided will be the same. The DC reference from the CODEC is used to bias the analog signals between +5V and ground. The capacitors are required so that the DC gain is unity for proper biasing from the CODEC reference. Also, the capacitors block DC signals that may interfere with SLIC or CODEC operation.

Layout Guidelines and Considerations

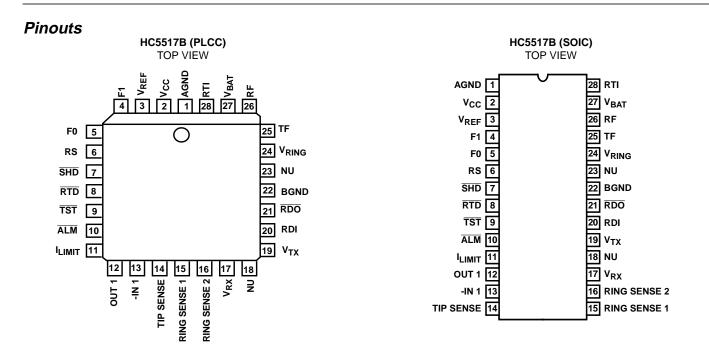
The printed circuit board trace length to all high impedance nodes should be kept as short as possible. Minimizing length will reduce the risk of noise or other unwanted signal pickup. The short lead length also applies to all high gain inputs. The set of circuit nodes that can be categorized as such are:

- V_{RX} pin 27, the 4-wire voice input (low gain input).
- -IN1 pin 13, the inverting input of the internal amplifier.
- V_{RFF} pin 3, the noninverting input to ring feed amplifier.
- V_{RING} pin 24, the 20V/V input for the ringing signal.

For multi layer boards, the traces connected to tip should not cross the traces connected to ring. Since they will be carrying high voltages, and could be subject to lightning or surge depending on the application, using a larger than minimum trace width is advised.

The 4-wire transmit and receive signal paths should not cross. The receive path is any trace associated with the V_{RX} input and the transmit path is any trace associated with V_{TX} output. The physical distance between the two signal paths should be maximized to reduce crosstalk, or separated by a ground trace.

The operating mode control signals and detector outputs should be routed away from the analog circuitry. Though the digital signals are nearly static, care should be taken to minimize coupling of the sharp digital edges to the analog signals.


The part has two ground pins, one is labeled AGND and the other BGND. Both pins should be connected together as close as possible to the SLIC. If a ground plane is available, then both AGND and BGND should be connected directly to the ground plane.

A ground plane that provides a low impedance return path for the supply currents should be used. A ground plane provides isolation between analog and digital signals. If the layout density does not accommodate a ground plane, a single point grounding scheme should be used.

HC5517B

Pin Descriptions

PLCC	SYMBOL	DESCRIPTION			
1	AGND	Analog Ground - Serves as a reference for the transmit output and receive input terminals.			
2	V _{CC}	Positive Voltage Source - normally +5V DC.			
3	V _{REF}	An external voltage connected to this pin will override the internal V _{BAT} /2 reference.			
4	F1	Power Denial - An active low TTL compatible logic control input. When enabled, the output of the ring amplifier will ramp close to the output voltage of the tip amplifier.			
5	F0	TTL compatible logic control input that controls multiplexing of the detector outputs.			
6	RS	TTL compatible logic control input that must be tied high for proper SLIC operation.			
7	SHD	Switch Hook Detection - An active low TTL compatible logic output. Indicates an off-hook condition.			
8	RTD	Ring Trip Detection - An active low TTL compatible logic output. Indicates an off-hook condition when the phone is ringing. May be used to indicate ring trip or ground key detection.			
9	TST	A TTL logic input. A low on this pin will keep the SLIC in a power down mode. The TST pin, in conjunction with the ALM pin, can provide thermal shutdown protection for the SLIC. Thermal shutdown is implemented by a system controller that monitors the ALM pin. When the ALM pin is active (low), the system controller issues a command to the TST pin (low) to power down the SLIC. The timing of the thermal recovery is controlled by the system controller.			
10	ALM	A TTL compatible active low output which responds to the thermal detector circuit when a safe operating die temperature has been exceeded.			
11	I _{LIMIT}	Loop Current Limit - used with V _{TX} to set the short loop current limiting conditions.			
12	OUT1	The 4-wire output of the SLIC.			
13	-IN1	The inverting input of the impedance matching amplifier. The non-inverting input is internally connected to AGND.			
14	TIP SENSE	An analog input connected to the TIP (more positive) side of the subscriber loop through a feed resistor. Functions with the RING terminal to receive voice signals and for loop monitoring purpose.			
15	RING SENSE 1	An analog input connected to the RING (more negative) side of the subscriber loop through a feed resistor. Functions with the TIP terminal to receive voice signals and for loop monitoring purposes.			
16	RING SENSE 2	This is an internal sense mode that must be tied to RING SENSE 1 for proper SLIC operation. Also used during unbalanced ringing.			
17	V _{RX}	Receive Input, 4-Wire Side - A high impedance analog input. AC signals appearing at this input drive the Tip Feed and Ring Feed amplifiers differentially.			
18	NU	Not used in this application. This pin should be left floating.			
19	V _{TX}	A low impedance analog voltage output which is proportional to the subscriber loop current. Since the DC level of this output varies with loop current, capacitive coupling to IN1- is necessary.			
20	RDI	TTL compatible input to drive the ring relay driver during unbalanced ringing.			
21	RDO	Open collector relay driver used during unbalanced ringing.			
22	BGND	Battery Ground - All loop current and some quiescent current flows from this terminal.			
23	NU	Not used in this application. This pin should be either grounded or left floating.			
24	V _{RING}	Low level ringing signal input.			
25	TF	Output of the tip line feed amplifier.			
26	RF	Output of the ring line feed amplifier.			
27	V _{BAT}	The negative battery source, all loop current flows into this terminal.			
28	RTI	Ring Trip Input - This pin is connected to the external negative peak detector output for ring trip detection.			

Trapezoidal Ringing Application Circuit

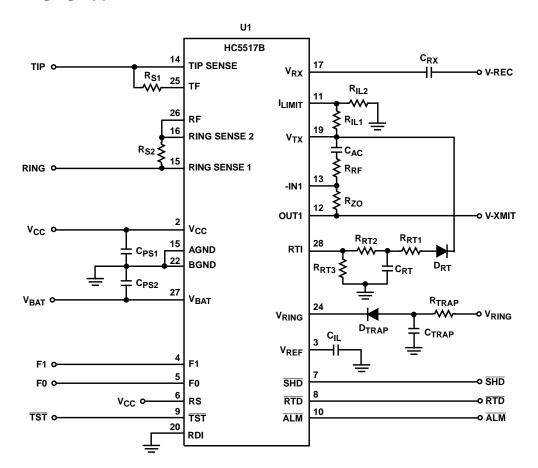


FIGURE 5. TRAPEZOIDAL RINGING APPLICATION CIRCUIT

HC5517B Trapezoidal Ringing Application Circuit Parts List

COMPONENT	VALUE	TOLERANCE	RATING	COMPONENT	VALUE	TOLERANCE	RATING
U1 - Ringing SLIC	HC5517B	N/A	N/A	R _{IL2}	7.68kΩ	1%	¹ / ₈ W
R _{S1} , R _{S2}	49.9Ω	1%	¹ / ₂ W	R _{TRAP}	User-Defined	1%	¹ / ₈ W
R _{ZO} , R _{IL1}	56.2kΩ	1%	¹ / ₈ W	C _{PS1} , C _{PS2}	0.1μF	10%	100V
R _{RT1}	49.9kΩ	1%	¹ / ₈ W	$C_{IL}, C_{RT}, C_{AC}, C_{RX}$	0.47μF	10%	50V
R _{RT2}	1.5ΜΩ	1%	¹ / ₈ W	C _{TRAP}	4.7μF	10%	10V
R _{RT3}	51.1kΩ	1%	¹ / ₈ W	D _{RT} , D _{TRAP}	1N914	Generic Rectifier Diode	
R _{RF}	45.3kΩ	1%	¹ / ₈ W				

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000

FAX: (407) 724-7000

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 **ASIA**

Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029